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Abnormal immune responses have been reported to be associated with autism. A number of studies showed
that cytokines were increased in the blood, brain, and cerebrospinal fluid of autistic subjects. Elevated IL-6 in
autistic brain has been a consistent finding. However, the mechanisms by which IL-6 may be involved in the
pathogenesis of autism are not well understood. Here we show that mice with elevated IL-6 in the brain dis-
play many autistic features, including impaired cognitive abilities, deficits in learning, abnormal anxiety traits
and habituations, as well as decreased social interactions. IL-6 elevation caused alterations in excitatory and

Keywords: ar g ! X ; A ; e

Autism inhibitory synaptic formations and disrupted the balance of excitatory/inhibitory synaptic transmissions. IL-6
Cytokine elevation also resulted in an abnormal change in the shape, length and distributing pattern of dendritic
IL-6 spines. These findings suggest that IL-6 elevation in the brain could mediate autistic-like behaviors, possibly

Synapse development
Synaptic transmission
Autistic-like behavior

through the imbalances of neural circuitry and impairments of synaptic plasticity.

Published by Elsevier B.V.

1. Introduction

Autism is a severe neurodevelopmental disorder characterized by
impairments in social interaction, deficits in verbal and non-verbal
communication, and repetitive behavior and restricted interests. Sus-
ceptibility to autism has been suggested to be attributable to genetic
factors and environmental risk factors [1-5], but the etiology of the
disorder is poorly understood. Immune aberrations consistent with
a dysregulated immune response have been reported in autistic chil-
dren [6]. A number of recent studies have demonstrated that various
inflammatory cytokines were elevated in blood mononuclear cells,
serum, plasma and cerebrospinal fluid of autistic subjects [7-13].
Vargas et al. [14] showed that IL-6, transforming growth factor
(TGF)-1 and macrophage chemoattractant protein (MCP)-1 were in-
creased in autistic brains. Recently, our laboratory detected that levels
of IL-6, IL-8, TNFa, IFN+y and GM-CSF were significantly increased in
the fontal cortex of autistic subjects [15].

Recent evidence points to a crucial role for IL-6 within the central
nervous system (CNS) [16,17]. IL-6 has been shown to stimulate the
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differentiation of astrocytes, primary dorsal root ganglion neurons,
hippocampal neurons and Schwann cells [18-21]. IL-6 can be neuro-
toxic and may mediate associations between maternal infection and
neurodevelopmental damage [22]. Samuelsson et al. [23] demon-
strated that prenatal exposure to IL-6 is critical for CNS function, but
may play a role in the origin of neuro-developmental and neurode-
generative diseases. Depending on the concentration, brain region
and cell type, IL-6 has been shown to promote neural growth as
well as to cause neuronal death [24], to protect against excitotoxicity
in cortical and cerebellar neurons, as well as to enhance NMDA-
induced excitotoxicity in cerebellar granule neurons [24-27]. Recent-
ly, IL-6 has also been demonstrated to promote neuronal differentia-
tion of neural progenitor cells in the adult hippocampus [19]. Another
group has elucidated a critical finding that supports the role of IL-6 in
the pathogenesis of schizophrenia and autism in the context of ma-
ternal immune activation [28].

Although elevation of IL-6 is a repeated finding in autism, the
exact mechanism by which an IL-6 increase may contribute to the
pathogenesis of autism remains undefined. In this study, by employ-
ing an adenoviral gene delivery approach we developed a mouse
model that over-expresses IL-6 in the brain, we showed for the first
time that elevation of IL-6 in the mouse brain produced certain autis-
tic features, including impaired cognitive abilities, deficits in learning,
abnormal anxiety-like traits and habituation, as well as decreased
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social interactions in older mice. To investigate how IL-6 elevation
leads to the development of autistic phenotype, we detected that an
IL-6 elevation resulted in increased excitatory synaptic formations
and a decreased number of inhibitory synapses. IL-6 elevation pro-
duced an increase in the length of dendritic spines and also stimulat-
ed the formation of mushroom-shaped dendritic spines. In addition,
we demonstrated that IL-6 elevation reduced postexcitatory inhibi-
tion in the mouse hippocampus.

2. Materials and methods
2.1. Intraventricular injection

Mouse GFP adenovirus (Ad-GFP) and mouse GFP-IL-6 adenovirus
(Ad-GFP-IL-6) were generated by Welgen (Worcester, MA). Normal
C57BL/6] mice were purchased from Jackson Laboratory (Bar Harbor,
Maine) and maintained in our breeding colony. On the day of birth,
designated as P0.5, pups were individually anesthetized on ice, and
2ul of Ad-GFP-IL-6 or Ad-GFP (2x10° genomic equivalents) was
injected into each lateral ventricle using a 10-puL Hamilton syringe
with a 30-gauge needle. All treatment of mice were approved by,
and carried out according to the guidelines of, the Institutional Ani-
mal Care and Use Committee.

2.2. Behavioral assays

Behavioral experiments were conducted in dedicated behavioral
testing rooms during the standard light phase, as previously de-
scribed [29,30]. Mice were brought to a holding room in the hallway
of the testing area at least 1 h prior to the start of the behavioral
test. Order of testing was as follows (1) general health at age
4-6 weeks, (2) elevated plus-maze at age 4-5 weeks, (3) social ap-
proach at age 18 weeks, (4) fear conditioning at age 6-7 weeks,
(5) rotarod at age 7 weeks, (6) open field test at age 7-8 weeks, and
(7) Morris water maze at age 7-8 weeks. The same cohort of animals
including both females and males were used for all behavioral stud-
ies. The n values refer to the number of animals analyzed for each
treatment group. General health, neurological reflexes, sensory and
motor abilities. The general health of the mice was evaluated at age
4-5 weeks. Briefly, empty cage behavior was scored by placing the
mouse into a clean, empty cage and noting incidents of transfer freez-
ing, wild running, stereotypies, and grooming and exploration levels.
General health assessment included assessing body weight, fur and
whisker condition, limb and body tone. Neurological reflex tests in-
cluded forepaw reaching, righting reflex, trunk curl, whisker twitch,
ear twitch, and corneal reflex. The reactivity level of the mice was
assessed with tests measuring responsiveness to petting, intensity
of dowel biting response and level of vocalization during handling. EI-
evated plus-maze. The elevated (95 cm) plus maze consists of 2 open
arms (30x5 cm) and 2 closed arms (30x5x 15 cm) extending from
a central (5x5cm) area. A raised lip (0.25cm) around the open
arms minimized falling off the edges of the open arms. Mice were
placed in the central area facing an open arm and allowed to traverse
the maze freely for 5 min. Arm entries (70% of mouse in the arm) and
time spent in the open and closed arms were tracked and scored
using ANYmaze software (Stoelting, Inc., Wood Dale, IL). The center
of the maze was lighted to 26 Ix with 2 desk lamps angled away
from the maze. Sociability. This experiment has two habituation
phases (center and all 3 chambers) followed by the sociability testing
phases. The test compares the preference for a social stimulus versus
an inanimate object. Social approach behaviors were tested in an ap-
paratus with 3 chambers in a single 30-min session, divided into 3
phases. The subject mouse was acclimated to the apparatus for
10 min in the center chamber (phase 1), and then for an additional
10 min with access to all 3 empty chambers (phase 2). The subject
was then confined to the middle chamber, while the novel object

(an inverted wire cup, Galaxy Cup, Kitchen Plus, Streetsboro, OH)
was placed into one of the side chambers, and the stranger mouse, in-
side an identical inverted wire cup, was placed in the opposite side
chamber. The C57BL/6] mice, aged 9-11 weeks old were used as the
stranger mice. The location (left or right) of the novel object and
stranger mouse alternated across subjects. The chamber doors were
opened simultaneously, and the subject had access to all 3 chambers
for 10 min (phase 3). Video tracking with ANYmaze automatically
scored the time spent in each of the 3 chambers, time spent sniffing,
and number of entries into each chamber during each 10-min phase
of the test. Animals used as strangers were C57BL/6] mice habituated
to the testing chamber for 30-min sessions on 3 consecutive days and
were enclosed in the wire cup to ensure that all social approach was
initiated by the subject mouse. An upright plastic drinking cup
weighed down with a lead weight was placed on top of each of the
inverted wire cups to prevent the subject mouse from climbing on
top. Both end chambers maintained a lighting level of 26-27 Ix with
2 desk lamps angled away from the maze. Contextual and cued fear
conditioning. Standard trace fear conditioning was conducted. Mice
were trained and scored for freezing behavior to the same environ-
mental context in a clear Plexiglas chamber (26 x 26 x 18 cm) with a
metal rod floor delivering a footshock (San Diego Instruments, San
Diego, CA). The conditioned auditory stimulus was provided by a
white noise generator (PLMR24, Pyle Audio Inc). A Dell Optiplex com-
puter connected to the shock generator delivered the unconditioned
foot shock stimulus (0.50-mA AC current). The novel context cham-
ber used for scoring the cued fear conditioning consisted of a white
plastic triangular shaped chamber (36x36x51cm) with 26 cm
high walls and a solid floor. The chamber was placed on the floor of
a test room that differed from the training test room. A novel odor
(1:10 diluted McCormick vanilla extract) was spread with a cotton-
tipped applicator on one wall of the triangle prior to the start of
each test session. Freezing was tracked by a digital video camera
interfaced to a PC installed with ANYmaze. Mice were brought indi-
vidually to the testing room, placed into the conditioning chamber,
and presented with 3 pairings of auditory white noise (US) and foot
shock (CS). The CS-US pairings were comprised of 30s of white
noise, a 2.5-s trace interval, and a 1-s footshock. Timing of the audito-
ry cue presentation and foot shock delivery were coordinated
through San Diego Instruments software. Freezing was scored during
the initial 2 min period prior to the CS-US pairings and during the
final 2 min. Twenty-four hours after training, mice were brought indi-
vidually to the original test room and returned to the training cham-
ber (same context), with the test room environment identical to the
training day, for the contextual test. Mice were placed in the chamber
and allowed to explore for 5 min in the absence of the auditory cue
and foot shock. Freezing behavior was scored over the 5 min test pe-
riod. Forty-eight hours post-training, mice were brought to a different
test room and placed in the triangular chamber (novel context) for
auditory cue testing. The session consisted of a 3 min exploration pe-
riod (pre-cue period) followed by 30 s of exploration with the identi-
cal 80 dB white noise (cue period), then a 4 min period with no sound
cue (post-cue period). Rotarod. The rotarod test of motor coordination
and motor learning was performed 3 trials a day for two consecutive
days by placing each mouse on a rotating drum (Accuscan, Columbus,
OH) that accelerated from 4 to 40 rpm over a 5-min period. The laten-
cy to fall from the drum was the measure of motor coordination. Im-
provement across trials was the measure of motor learning. Open field
exploration. Exploratory locomotor activity was assayed in an auto-
mated open field arena (Accuscan, Columbus, OH). Open field cham-
bers consisted of clear Plexiglas sides and floor approximately
40x40x30.5 cm. Mice were placed in the center of the open field
and allowed to explore the chamber for 15 min. Horizontal activity,
total distance, vertical activity, and center time were automatically
collected using Anymaze software. Moriss water maze. Spatial learn-
ing and memory were assessed in the Morris water maze using
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established procedures and equipment. The training sequence was a)
acquisition of hidden platform, b) probe trial. The apparatus was a cir-
cular pool (120 cm diameter) filled 45 cm deep with tap water ren-
dered opaque with the addition of non-toxic (Crayola) white paint.
Trials were scored with ANYmaze. Training consisted of 4 trials per
session per day. The mouse was placed into the pool facing the pool
edge in a new quadrant for each trial. The hidden platform remained
in the same quadrant for all trials across all sessions of acquisition.
Training and trials lasted 60 s. During the training, if the mouse did
not locate the platform within 60 s, it was guided to the platform by
the experimenter. Subjects were left on the platform for 15 s before
being placed under a warming light for the 30-45 s intertrial inter-
vals. Hidden platform training continued until the control group
met the criteria of 15 s or less latency to find the hidden platform.

Mice were tested on a 60 s probe trial 24 h after completing hidden
platform testing on the day criteria was met. Parameters recorded dur-
ing training were latency to reach the platform, total distance traveled,
swim speed and thigmotaxis. Probe trial selective quadrant search was
assessed by time and distance spent in each quadrant and the number
of crossings over the trained quadrant platform location compared to
the analogous locations in the non-trained quadrants.

2.3. Morphological study

The Ad-GFP-IL-6 and Ad-GFP mice, 12 weeks of age, were anesthe-
tized and perfusion-fixed with 4% fresh paraformaldehyde and cryo-
protected with 30% sucrose. 40 pm parasagittal cryostat sections
were blocked with 3% goat serum/0.3% Triton X-100 in PBS and

Ad-GFP Somatosensory Cortex

Ad-GFP-IL-6 Hippocampus

CA1

incubated with anti-Synaptophysin polyclonal antibody (1:200, Cell
Signaling Technology), anti-VGLUT1 monoclonal antibody (1:500,
Millipore), and anti-VGAT polyclonal antibody (1:500, Millipore)
overnight at 4 °C, followed by incubation with Alexa Fluor 555 anti-
mouse and anti-rabbit IgG (1:1000, Invitrogen) for 1.5 h at room tem-
perature. Sections were transferred onto SuperFrost slides and
mounted under glass coverslips with ProLong Gold antifade reagent
(Invitrogen). Sections of hippocampus and somatosensory cortex
were imaged with Nikon eclipse 90i confocal laser scanning micro-
scope. For quantitative analysis, the CA1 and CA3 subfields of the hip-
pocampus, and somatosensory cortex were imaged. Images were
acquired in the linear range with constant settings and analyzed
with Image] and normalized with data from Ad-GFP mice to deter-
mine synaptic density and size, respectively. All analyses were per-
formed blind to the treatment of the animals. Immunoreactive
puncta were defined as discrete regions along the dendrite with fluo-
rescence intensity twice the background. Negative controls, in which
the primary antibodies were omitted and treated only with the sec-
ondary antibodies, were run for each condition to exclude false posi-
tive secondary antibody binding.

2.4. Dil labeling of dendrites

Dil labeling was employed to outline the shape of dendritic spines,
modified from the literatures [31,32]. The mice, 16 weeks of age, were
transcardially perfused with 0.1 M PBS and followed by 1.5% parafor-

maldehyde in 0.1 M PBS for 30 min. Brains were removed and post-
fixed in the same fixative for 1 h, and then were coronally sectioned

Ad-GFP-IL-6 Somatosensory Cortex

Fig. 1. Intracranial expression of GFP-IL-6 using adenovirus transduction in the brain. C57BL/6] pups (P0.5) were injected intracerebroventricularly with Ad-GFP or Ad-GFP-IL-6. The
intracranial expression of GFP-IL-6 was examined at 12 weeks post injection. The expression was seen in the neuronal cell layers of hippocampal CA1 to CA3 region and somato-
sensory cortex. The right figures were the magnified areas from the boxes of the left figures. Scale bar, 100 pum.
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(200 um thick) using a vibratome at room temperature. Slices were
incubated with Vybrant-Dil cell-labeling solution (1: 150, V22885,
Invitrogen) for 36 h at 4 °C to allow Dil crystals to diffuse fully along
the neuronal membranes. The slices were bathed in the PBS for 48 h
to allow more time for diffusion. The slices were mounted on glass
slides with ProLong Gold antifade reagent (Invitrogen). All images
were taken within 7 days after coverslipping using Nikon eclipse 90i
confocal laser scanning microscope.

Spine quantification and measurements were done as described
previously [33,34]. Spines were counted by scrolling through the Z-
stack and marking each spine. Spine density was computed as num-
ber of spines per dendrite length in 10 microns. Spine length was
measured from shaft to tip using a bent-line tool on maximum inten-
sity projections of the Z-stacks. To obtain spine area, image regions
including head and neck, but not dendritic shaft, were measured
and counted as the number of non-zero pixels and multiplied by the
calibration factor. Spines with a minimum head diameter of 0.35 pm
and minimum head vs neck ratio of 1.1 were classified as mushroom
spines [35]. The spines were counted in 5-6 neurons/mouse and 3
mice/group. For each neuron, 3-5 dendrites were analyzed and the
values were averaged within each individual neuron.

2.5. Hippocampal slice electrophysiology

The electrophysiology was done as described previously [36]. An-
imals, ~ 16 weeks of age, were anesthetized with CO, and decapitated.
The brain was rapidly removed and immersed in ice-cold sucrose-
based artificial CSF (sucrose-ACSF) (in mM: 126 sucrose, 5.0 KCl, 2.0
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CaCly, 2.0 MgS0,, 1.25 NaH,PO4, 26 NaHCOs3, and 10 D-glucose, pH
7.4). Slices containing both the hippocampus and adjacent entorhinal
cortex (300 um) were cut in the horizontal plane using a vibratome
(Leica) and transferred to a nylon net in a recording chamber (Fine
Science Tools, Foster City, CA) in which they were maintained at
~31°C, oxygenated (5% CO,, 95% 0,), and immersed in sucrose-
ACSF, except for the upper surface. After 30 min, sucrose-ACSF was
replaced by ACSF containing NaCl substituted equimolar for sucrose
(saline-ACSF), and recordings began 30 min later. The recording
chamber was continually perfused with saline-ACSF at a rate of
~1 ml/min, regulated by a peristaltic pump (Gilson, Middleton, WI).
Recording electrodes made of borosilicate glass (0.75 mm inner di-
ameter, 1.0 mm outer diameter; World Precision Instruments, Saraso-
ta, FL) were pulled horizontally (Sutter Instruments, Novato, CA) and
filled with saline-ACSF for extracellular recordings (10-15 MQ
resistance).

Monopolar stimulating electrodes were made from Teflon-coated
wire (75pum diameter, including Teflon; A-M Systems, Carlsborg,
WA), and stimuli were triggered digitally (100 pA, 10-200 ps;
STG1002 Stimulus generator, Multichannel systems) at low frequen-
cies (<0.05 Hz). For Schaffer collateral activation of CA1 pyramidal
cells, the stimulating electrode was placed at the tip of the Schaffer
collateral bundle, on the border of CA2, ~150 um from the pyramidal
cell layer, and the recording site was CA1. The site ultimately used
was the one in which the maximal response was elicited of all of
those tested. Electrophysiological data were collected using an ampli-
fier (HEKA Electronics, Lambrecht/Pfalz, Germany) and stored using
IGOR Pro 6.2 software (WaveMetrics, Lake Oswego, OR).
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(pre-cue) but significantly less freezing than Ad-GFP mice to the auditory cue (cue) on Day 3, n=12. Values are mean 4 SEM. *P<0.05, **P<0.01 and ***P<0.001.
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The extracellularly recorded EPSP [field EPSP (fEPSP)] amplitude
was measured as the voltage difference between the prestimulus po-
tential and the peak of the fEPSP. To assess paired-pulse inhibition or
paired-pulse facilitation, paired half-maximal stimuli were delivered
to the Schaffer collateral pathway with a range of interstimulus inter-
vals. Intervals of 10 and 20 ms were chosen to assess paired-pulse inhi-
bition, whereas intervals of 40, 80 and 120 ms were chosen to assess
paired-pulse facilitation, based on empirical determination that these
intervals provided strong paired-pulse inhibition and robust facilitation,
respectively. The paired-pulse ratio was defined as (amplitude evoked
by the second stimulus)/(amplitude evoked by the first stimulus). All
data acquisition and analysis was carried out blinded to treatments. Re-
cordings were obtained from one mouse per day.

2.6. Statistics

All data were analyzed using commercially available statistical
software packages (StatView 5.0 and GraphPad Prism 5). General
health and neurological screening was analyzed using unpaired t-
test (two-tailed). Elevated plus maze, social approach, fear condition-
ing, accelerating rotarod, open field test and Morris water maze were
analyzed using two-way ANOVA with repeated measures with
Bonferroni's post hoc comparison. The immunohistochemistry find-
ings were analyzed with the unpaired t test (two-tailed). Spine den-
sity, spine length, spine area and ratio of mushroom spine were
analyzed with unpaired ¢t-test (two-tailed). The Kolmogorov-Smirnov
test was used to compare the patterns of cumulative frequency. The
paired pulse ratio data was analyzed by two-way ANOVA with repeat-
ed measures with Bonferroni's post hoc analysis. All data are shown as
mean + SEM. For all findings, the statistically significant P values are
shown as *P<0.05, **P<0.01, and ***P<0.001.

3. Results
3.1. Generation and characterization of Ad-GFP-IL-6 mice

Injection of an adenovirus-gene construct into the cerebral ventri-
cles of the mouse has been reported to result in widespread transduc-
tion and life-long expression of the packaged gene [37,38]. To develop
a mouse model with stable over-expression of IL-6 in the brain, ade-
novirus encoding green fluorescent protein (GFP) IL-6 fusion protein
(Ad-GFP-IL-6) and adenovirus encoding GFP (Ad-GFP) as control
were bilaterally injected into the cerebral lateral ventricles of P0.5
C57BL/6] mice [39,40], GFP expression was detected as green fluores-
cence in brain slices 12 weeks after injection. The fluorescence was
seen in the neuronal cell layers of hippocampal CA1 to CA3 region, so-
matosensory cortex (Fig. 1) and cerebellum (Supplementary Fig. 1)
and even other cell types. The IL-6 gene was successfully delivered
into the brain.

3.2. Ad-GFP-IL-6 mice with IL-6 overexpression in the brain show the
autism-like features

3.2.1. Similar general health

Ad-GFP-IL-6 mice and control Ad-GFP mice were similar on most
measures of general health, reflexes, and sensory function. The Ad-
GFP-IL-6 mice showed the similar size and weight with control mice
(Fig. 2A and Supplementary Table 1). General reactivity was assessed
with petting escape, struggling and/or vocalizations, and dowel bit-
ing. There were no significant differences between two groups. Ob-
servations of home cage behaviors indicated that Ad-GFP-IL-6 mice
were normal on home cage activity, nest building, huddling, and re-
petitive self-grooming. All reflexes were present in both groups. A
group difference was detected in the wire hang test, in which the
Ad-GFP mice hung on longer than did the Ad-GFP-IL-6 mice (Supple-
mentary Table 1).

3.2.2. Impaired social approach behavior

The three-chambered sociability test showed that Ad-GFP-IL-6
mice showed significantly impaired social approach behavior as com-
pared with the controls. Paired comparisons revealed that mice in
both groups spent more time in the chamber of the stranger mouse
(Supplementary Fig. 2), but the Ad-GFP-IL-6 mice spent significant
less time sniffing the stranger mouse compared to the Ad-GFP
group at 18-weeks (P<0.05; Fig. 2B).

3.2.3. Impaired cognitive ability

The Morris water maze (MWM) was used to investigate spatial
learning and memory. MWM learning is thought to rely extensively
on the hippocampus. Fig. 2C illustrates the performance of the two
groups of mice in the MWM spatial learning and memory task. During
acquisition, there was a significant main effect of IL-6 treatment
(P<0.001), in which the Ad-GFP-IL-6 mice did not show improve-
ment during six days of training for latency to reach the hidden plat-
form. The Ad-GFP-IL-6 mice also swam a greater total distance
compared to the Ad-GFP mice across the days of training (P<0.05;
Supplementary Fig. 3A). The swimming speed did not differ between
the two groups on any day of training (Supplementary Fig. 3B). Dur-
ing the probe trial, we did not find significant differences between the
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two groups on platform crossings or time spent in the training
quadrant (Fig. 2C and Supplementary Fig. 3C). We conclude that IL-6
affected acquisition of the task, but not performance during probe trials.

The mice were also assessed for learning and memory in a trace
contextual and cued fear learning paradigm. As shown in Fig. 2D, in
the training phase, there was no significant effect of treatment on
freezing behavior following the tone-cue pairings, though the Ad-
GFP-IL-6 mice froze more prior to training. Both groups showed sig-
nificantly more freezing following training than in the initial 2 min

A

Synaptophysin

Ad-GFP

Ad-GFP-IL-6

vy)

Synaptophysin

Ad-GFP

Ad-GFP-IL-6

VGLUT1 VGAT

VGLUT1

before the tone-cue pairings. Treatment did not affect the time
spent freezing during the context test on Day 2. On Day 3, the mice
were placed in a novel environmental context and given the auditory
tone that had been paired with footshock during training. The Ad-
GFP-IL-6 mice demonstrated more freezing to the novel context but
significantly less freezing than Ad-GFP mice to the auditory cue
(P<0.01). Notably, the Ad-GFP-IL-6 mice froze significantly more
pre-training on the first day and pre-cue in the novel context than
Ad-GFP mice (Fig. 2D). During the first 2-3 minutes in a new

Fig. 4. Ad-GFP-IL-6 mice exhibit an increased excitatory synapse formation and a reduced inhibitory synapse formation. Representative confocal immunofluorescence images of
sections of the CA1 region (A) and CA3 region (B) in the hippocampus and somatosensory cortex (C) from 3 Ad-GFP-IL-6 mice and 3 Ad-GFP mice after being labeled with anti-
bodies to Synaptophysin (labels all synapses), VGLUT1 (labels excitatory synapses) and VGAT (labels inhibitory synapses). For each animal, at least three nonconsecutive sections
were analyzed. Scale bar, 50 um. The legend in one of the panels applies to all panels. D, Quantitation of the density of synaptic puncta that are above threshold by image analysis of
confocal immunofluorescence sections. Values are mean + SEM. *P<0.05, **P<0.01 and ***P <0.001.
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environment, the Ad-GFP-IL-6 mice spent less time exploring than
the control mice indicating possible deficits in habituating to a
novel environment. The data from the open field test in which the
Ad-GFP-IL-6 mice increased their total distance traveled in the second
and third 5 min intervals as compared with the controls (see below)
seem to support this. Our results revealed that the elevated IL-6 in
brain disrupted cued fear memory but did not affect contextual fear
memory.

3.2.4. Abnormal anxiety-like trait and habituation

As shown in Fig. 3A, in the elevated plus maze test, Ad-GFP-IL-6 mice
spent more time on the open arms (P<0.01), indicating that Ad-GFP-IL-6
mice exhibited less anxiety-like behavior. Next, we employed the open
field test to examine whether Ad-GFP-IL-6 mice exhibit abnormal habitu-
ation. Habituation to an open field is measured as a change in exploratory
activity over time [41]. During the open field test, Ad-GFP-IL-6 mice trav-
eled longer distances during the second and third 5-min intervals, indicat-
ing that Ad-GFP-IL-6 mice have a defect in habituating to a novel
environment (Fig. 3B). The increased traveling distance is not related to
locomotor ability because the Ad-GFP-IL-6 mice did not have a difference
in latency to fall from the accelerating rotarod test (Fig. 3C) as compared
to Ad-GFP mice.

3.3. Ad-GFP-IL-6 mice exhibit an increase in excitatory synapse forma-
tion and a reduction in inhibitory synapse formation

A growing number of studies suggest that autism is likely to arise
from functional changes in neural circuitry and to be associated with
an imbalance between excitatory and inhibitory synaptic transmis-
sion, although the mechanisms involved are unclear [42-44]. To in-
vestigate whether IL-6 could mediate autism-like behaviors through
its effects on neural circuitry, we examined the development of syn-
apses in Ad-GFP-IL-6 and Ad-GFP mice by using antibodies to synap-
tic vesicle proteins. An antibody to synaptophysin, a general marker
of all synapses, as well as antibodies to VGLUT1 (vesicular glutamate
transporter), a marker of excitatory synapses, and VGAT (the vesicu-
lar GABA transporter), a marker of inhibitory synapses, were used in
this study (Fig. 4A-C). By image analysis, we observed a dramatic in-
crease in the intensity of VGLUT1 in Ad-GFP-IL-6 mice as compared
with Ad-GFP mice in the hippocampus (P<0.001) and somatosensory
cortex (P<0.05) (Fig. 4D). In contrast, the intensity of Synaptophysin
and VGAT was decreased in the hippocampus but not in the somato-
sensory cortex. These data suggest that IL-6 over-expression may im-
pair the balance of neural circuitry by stimulating the formation of
excitatory synapses and reducing the formation of inhibitory
synapses.
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mice. (F) Cumulative frequency distribution of spine lengths, corresponding to the dataset in (E). Values are mean + SEM. *P<0.05, **P<0.01.

3.4. Ad-GFP-IL-6 mice have larger numbers of mushroom-shaped
dendritic spines and the length of spines are increased

Dendritic spine dynamics plays an important role in mediating
learning and memory, and is of essential importance to synaptic func-
tion [45-48]. Studies suggest that excitatory synapses mainly connect
to mushroom-shaped dendritic spines [49]. It has also been shown
that the size and length of dendritic spines are closely related to
their functions. To further investigate whether IL-6 overexpression
affected the development of dendritic spines, we employed Dil label-
ing to outline dendritic spines in pyramidal neurons of the somato-
sensory cortex (Fig. 5A). Our results showed that both the density
and the size of dendritic spines were not altered in Ad-GFP-IL-6
mice as compared with the controls (Fig. 5, B and C). However, we
found the Ad-GFP-IL-6 mice had significantly larger numbers of
mushroom-shaped dendritic spines, while the total spine numbers
remained unchanged. Fig. 5D shows that neurons in Ad-GFP-IL-6
mice had an abnormally high fraction of mushroom spines, identified
by their head vs neck width ratios [35]. The spines with the mush-
room morphology were increased by ~27% (P<0.05). Next we exam-
ined the effects of IL-6 on spine length and detected that the dendritic
spines on average were 23% longer in Ad-GFP-IL-6 mice than in Ad-
GFP mice (P<0.01; Fig. 5E). In addition, the distribution of different
length of spines was altered (P<0.01; Fig. 5F). Ad-GFP-IL-6 mice
have fewer short spines and more medium to long spines. Taken to-
gether, these data indicate that over-expression of IL-6 in mice
brain can strongly affect the morphology of dendritic spines and im-
pair the normal pattern of spine shape.

3.5. Reduced postexcitatory inhibition in Ad-GFP-IL-6 mice
A paired-pulse paradigm is commonly used to study postexcita-

tory inhibition effects related to synaptic processes and neurotrans-
mitters release [50]. To further investigate whether the effect of IL-6

on synaptic proteins and drendrtic spines may lead to an alteration
of synaptic transmission, we measured synaptic function in the Ad-
GFP-IL-6 mice by recording extracellular field excitatory post-
synaptic potentials (fEPSPs) in the CA1 area of the hippocampus in
acute slices. Intervals of 10 and 20 ms were chosen to assess paired-
pulse inhibition, whereas intervals of 40 and 80 ms were chosen to
assess paired-pulse facilitation, based on empirical determinations
that these intervals provide strong paired-pulse inhibition and robust
facilitation, respectively [36]. Fig. 6A shows typical examples of
paired-pulse responses recorded from Ad-GFP-IL-6 mice and Ad-GFP
mice at different interstimulus intervals (ISI). Ad-GFP-IL-6 mice
exhibited an increase in the paired-pulse ratio at the shorter ISIs of
10 and 20 ms, indicating a decrease in inhibition (P<0.001; Fig. 6B).
The two groups showed no significant difference of paired-pulse ra-
tios at the longer ISIs of 40, 80 and 120 ms, indicating that they
have similar paired-pulse facilitation (Fig. 6B). Paired-pulse facilita-
tion and paired-pulse inhibition have been considered to be forms
of short-term synaptic plasticity [50]. We also tested the long-term
potentiation (LTP) of fEPSPs, a form of long-term plasticity, which
was induced after a 30 min period of stable baseline responses by ap-
plying a theta-burst stimulation (TBS) train. No significant difference
was detected between the two groups (data not shown).

4. Discussion

A growing number of studies suggest that dysregulated immune
responses may be involved in autism. Various hypotheses have
attempted to link dysfunctional immune activity and autism, such
as maternal immune abnormalities during early pregnancy, increased
incidence of familial autoimmunity, and childhood vaccinations [7].
Recently several lines of research have shown increased expression
of inflammatory cytokines in the peripheral blood, brain and cerebro-
spinal fluid of autistic subjects [7,10,12,13]. In particular, IL-6 eleva-
tion in the autistic brain has been a repeated finding [14,15,51]. IL-6
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signaling has also been suggested as a key mechanistic pathway in
maternal immune activation that may be associated with autism
[52]. In the CNS, the cellular sources of IL-6 include astrocytes, micro-
glia and neurons [22,53]. IL-6 is normally expressed at relatively low
levels and increases under pathological condition [53,54]. However
whether the increased IL-6 expression found in the autistic brain
has specific behavioral consequences remains unknown. In this
study, we developed a mouse model for over-expressing IL-6 in the
brain with an adenoviral gene delivery approach. We demonstrated
that IL-6 is an important mediator of autism-like behaviors. Mice
with an elevated IL-6 in brain developed autism-like behaviors, in-
cluding impaired cognition ability, deficits in learning, abnormal
anxiety-like trait and habituation, as well as a decreased social inter-
action initiated at later stages. These findings suggest that an IL-6 el-
evation in the brain could modulate certain pathological alterations
and contribute to the development of autism.

Inhibitory and excitatory synapses play fundamental roles in in-
formation processing in the brain. Inappropriate loss of synaptic

stability could lead to the disruption of neuronal circuits and to
brain dysfunction. The possibility that alteration of synaptic functions
could lead to autism was noted by the phenotypic overlap between
autism, fragile X syndrome, and Rett syndrome [55,56]. A key role
for excitatory/inhibitory alterations in autism is supported by the ob-
servation that 10-30% of autistic individuals have epilepsy [57]. The
synaptic abnormality hypothesis is further supported by the identifi-
cation of mutations affecting synaptic cell adhesion molecules, in-
cluding NRXN1, NLGN3/4, SHANK3, as well as mutations in synaptic
proteins, including CNTNAP2, CACNA1C, CNTN3/4 and PCDH9/10, in
autistic subjects [1,58-65]. To further investigate the possible mecha-
nisms through which IL-6 elevation may mediate autistic phenotypes,
we examined whether IL-6 over-expression affected synaptic protein
development and neural circuit balances. We detected that an IL-6 el-
evation stimulated excitatory synapse formation, but impaired the
development of inhibitory synapses. The complexity and specificity
of synaptogenesis relies upon modulation of cell adhesion molecules
(CAMs), which regulate contact initiation, synapse formation,
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maturation, and functional plasticity. Disruption of adhesion may re-
sult in structural and functional imbalances at synapses. A recent
study in our lab found that IL-6 overexpression in cultured mice cer-
ebellar granule cells impaired cell adhesion and migration [51]. This
finding may suggest that IL-6 could be involved in the regulation of
CAM:s. It will be of interest for future studies to determine whether
the effect of IL-6 on synapse formation is through its possible modu-
lation of CAMs.

Dendritic spines are small membranous protrusions that contain
the postsynaptic machinery, including glutamate receptors, postsyn-
aptic densities (PSD), the actin cytoskeleton, and a wide variety of
membrane-bound organelles, such as smooth endoplasmic reticulum,
mitochondria, and endosomes. Electron microscopic studies have
identified several categories of spines based on their shape and size,
including thin, stubby, cup, and mushroom shaped [66]. It is becom-
ing evident that spine morphology is intimately linked to synapse
function, which is the basis of learning and memory [67]. In this
study, we found that IL-6 elevation in mouse brain resulted in a sig-
nificant increase in the length of dendritic spines. In addition, IL-6 el-
evation stimulated the formation of mushroom-shaped dendritic
spines, while the total numbers of spines remained unchanged. In-
creased spine length has been suggested to reflect a lag in the matu-
ration of synaptic structures [68]. In addition, increased spine length
has been reported in Fmr1 knock-out mice, the animal model for
the fragile X syndrome, and is also an animal model for autism,
since about one third of patients with fragile X syndrome exhibit au-
tism symptoms [68,69]. It is unknown whether abnormal develop-
ment of dendritic spine is presented in autism. However our
findings imply that an IL-6 elevation in the autistic brain could impair
the maturation of dendritic spines.

Excitatory synapses are mainly situated on mushroom-shaped spines
that have larger PSDs with a higher density of glutamate receptors
[49,70,71]. The increased mushroom-shaped spines found in Ad-GFP-IL-
6 mice thus further support the possibility that IL-6 elevation may stimu-
late the formation of excitatory synapses and result in enhanced excitato-
ry synaptic transmission. It was reported that both the mRNA and protein
levels of the AMPA glutamate receptor were significantly increased in the
autistic brain [72]. We suggest that an IL-6 elevation may contribute
to this alteration through its stimulating effect on the formation of
mushroom-shaped spines that have a higher density of glutamate recep-
tors. Taking together, our findings suggest that an IL-6 elevation
could impair dendritic spine maturation/function and cause excitatory/
inhibitory imbalances, which may be responsible for the learning and cog-
nitive defects we observed in Ad-GFP-IL-6 mice.

To further investigate how IL-6 elevation affected the balance of
excitatory and inhibitory processes, we recorded fEPSPs in the CA1
area of the hippocampus in acute slices. We detected a reduced post-
excitatory inhibition in Ad-GFP-IL-6 mice. Postexcitatory inhibition
analyzed by paired-pulse inhibition (PPI) has been suggested to be
caused by a decrease in the release of excitatory neurotransmitters
from terminals of afferent axons [73-75]. This effect is likely the re-
sult of an inhibition of calcium influx through presynaptic receptors
which play a causal role in the release of glutamate from synaptic
vesicles on afferent stimulation [50,76]. Thus, the reduced PPI in
Ad-GFP-IL-6 mice indicates an increased release of excitatory neuro-
transmitters possibly stimulated by calcium influx. Orellana et al.
[77] demonstrated that IL-6 treatment of rat hippocampal neurons
increases the calcium influx via the NMDA-receptor and is mediated
by the JAKs/STATs pathway. We suggest that IL-6 elevation in mouse
brain could cause a reduced PPI through increasing calcium influx
and stimulating the release of excitatory neurotanmitters. Decreased
PPI has also been shown in some other neurological and psychiatric
diseases including Huntington's disease, schizophrenia and in
Down's syndrome [50]. Several lines of research have presented con-
vincing data demonstrating an association between defects in inhib-
itory capacity and cognitive impairment [50,78].

In summary, our study supports a critical role of IL-6 elevation in
modulating autism-like behaviors through impairments on synapse
formation, dendritic spine development, as well as on neuronal cir-
cuit balance. These findings suggest that manipulation of IL-6 may
be a promising avenue for therapeutic interventions.
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