Михаил Супотницкий (Россия) |
![]() |
"Забытая" иммунология эпидемических, инфекционных и поствакцинальных процессов |
|
Новости медицины и фармации, 2014, № 9–10, стр. 19-23; № 11–12, стр. 16–20 |
Супотницкий Михаил Васильевич (р. 1956) — кандидат
биологических наук, старший научный сотрудник, бывший военный микробиолог, полковник мед. службы
запаса. Автор многочисленных книг и публикаций по эпидемиологии возбудителей опасных инфекционных
болезней и проблемам биологической безопасности. Сайт М. Супотницкого — http://www.supotnitskiy.ru/avtor.htm
Оригинал здесь О серьезных пробелах в знаниях об иммунологии эпидемических, инфекционных и поствакцинальных процессов говорит то, что до настоящего времени распространение многих опасных инфекционных болезней не удается контролировать с помощью вакцинации, а результативность самих вакцинаций вызывает все больше вопросов у врачей. В работе рассмотрены феномены антигенного импринтинга и антителозависимого усиления инфекции. Оба феномена обнаружены более 50 лет назад, однако в российских руководствах для врачей их описание отсутствует. Показано, что иммунология так, как она преподается в медицинских вузах, носит чрезмерно упрощенный характер. Тот объем знаний, которые получают в этой области врачи, выгоден лишь недобросовестным производителям устаревших вакцин. Оба "забытых" иммунологических феномена играют важную роль в эпидемических процессах и в определенных ситуациях способны усиливать инфекционный процесс у реконвалесцентов и ранее вакцинированных пациентов. Они также являются основным препятствием в создании вакцин против возбудителей гриппа, ретровирусных инфекций, лихорадок Денге, Марбург, Эбола, гепатита С, энцефалитов Западного Нила и долины Мюррей, малярии и некоторых других. Их игнорирование при подготовке медицинских специалистов в такой сфере, как борьба с инфекционными болезнями, создает благоприятные условия для злоупотреблений фармацевтических компаний, тормозит развитие отечественной эпидемиологии и иммунологии и отдает приоритет новых открытий зарубежным исследователям. Библиографическое описание: Супотницкий М. В. "Забытая" иммунология эпидемических, инфекционных и поствакцинальных процессов // Новости медицины и фармации. — 2014. — № 9–10. — с. 19–23; № 11–12. — с. 16–20. * * * * * * *
Распространенные учебные руководства для медицинских работников [1–7] содержат типичные представления об иммунитете, из которых не следует, почему до настоящего времени не создано вакцин, позволяющих контролировать распространение многих опасных инфекций. Цель настоящей работы — обратить внимание врачей на пробелы в знаниях об иммунологии эпидемических, инфекционных и поствакцинальных процессов, получаемых ими в медицинских вузах. Рассмотрена роль в этих процессах феноменов антителозависимого усиления инфекции и антигенного импринтинга1. 1. Формирование типичных представлений об иммунитетеСложившиеся в конце XIX в. представления о специфическом иммунитете отражают взгляды Э. Дженнера и Л. Пастера, априори предполагавших, что первый контакт с возбудителем инфекционной болезни создает у человека невосприимчивость (иммунитет) к повторному заражению [11]. Теория опсонинов, разработанная А. Е. Райтом и С. Дугласом в 1903 г. [12], примирила враждующие между собой фагоцитарную (И. И. Мечников) и гуморальную (Р. Кох, П. Эрлих) теории иммунитета и дала толчок к ее дальнейшему развитию на основе представлений о кооперации клеточно-гуморальных иммунологических реакций. В последующие годы были описаны и апробированы иммунологические реакции и тесты с фагоцитирующими клетками и специфическими антителами, уточнялся механизм их взаимодействия с антигенами. В 1948 г. А. Фагреус доказала, что антитела синтезируются плазмоцитами. Иммунологическая роль Т- и В-лимфоцитов установлена в 1960-х гг., когда было показано превращение В-клеток в плазмоциты под влиянием антигенов и образование из недифференцированных Т-клеток нескольких субпопуляций, синтезирующих специфические к антигену антитела. В 1966 г. открыты цитокины Т-лимфоцитов, обусловливающие кооперацию (взаимодействие) иммунокомпетентных клеток. Сформулированная в 1964 г. Н. Йерне и Ф. Бернетом клонально-селекционная теория иммунитета дала ученым понимание того, каким образом специфические антитела могут накапливаться в достаточно высокой концентрации, чтобы эффективно блокировать инфекционный процесс. Подобный же механизм установлен и при формировании клоноспецифических Т-клеток [17]. В настоящее время типичная схема иммунного ответа на возбудитель инфекционной болезни выглядит следующим образом. Макрофаг поглощает (фагоцитирует) патогенный микроорганизм (бактерия, вирус), инактивирует его и презентирует Т- и В-лимфоцитам. Ввиду различий рецепторного аппарата В-клетки реагируют с одними детерминантами, Т-клетки — с другими. Получив информацию об антигене от антиген-презентирующих клеток (макрофаги, несущие на внешней мембране антигены), Т-хелперы с помощью иммуноцитокинов передают сигнал, усиливающий пролиферацию Т- и В-лимфоцитов определенных клонов2. В-лимфоциты дифференцируются до плазмоцитов, а Т-хелперы превращаются в Т-киллеры (Т-эффекторы). Плазмоциты синтезируют специфические антитела, участвующие в иммунном ответе в трех формах — нейтрализации, опсонизации и активации системы комплемента (гуморальный иммунный ответ); Т-киллеры разрушают клетки-мишени при непосредственном контакте (цитотоксический или клеточный иммунный ответ). После первичного контакта с антигеном остаются клоны Т- и В-клеток памяти, сохраняющие информацию о нем много лет. При вторичном попадании этого антигена в организм человека они рекрутируют специфические лимфоциты, происходит стимуляция этих клонов, и клетки памяти начинают интенсивно размножаться3. В-клетки переходят в плазмоциты, продуцирующие антитела нужной специфичности. Т-клетки обеспечивают клеточную форму защиты (субпопуляции цитотоксических Т-клеток и Т-клеток воспаления) и участвуют в формировании гуморального иммунитета — хелперные Т-клетки [4-7; 17]. В соответствии с такой схемой, гуморальные и клеточные реакции, развивающиеся в ответ на введение вакцины или развитие инфекционного процесса, могут иметь исключительно защитный характер. Поэтому любой препарат, полученный на основе антигенов какого-то возбудителя инфекционной болезни и вызывающий образование специфических к этим антигенам антител, можно назвать вакциной, а любую массовую вакцинацию легко представить общечеловеческим благом. 2. Феномен антигенного импринтинга4В 1953 г. Davenport et al. [18] неожиданно для себя обнаружили, что в сыворотке крови людей старше 28 лет, переболевших гриппом до проводившихся в начале 1950-х гг. массовых вакцинаций, низкие титры антител к вирусу серотипа А (H1N1)5, использованному при приготовлении вакцины, но повышенное содержание антител к вирусу гриппа, циркулировавшему ранее. Наибольшее количество таких людей приходится на возрастную группу 35–38 лет, пережившую пандемию гриппа "испанка" в 1918 г. Аналогичные результаты были получены в отношении вируса гриппа серотипа B и его антигенных вариантов [19]. Для объяснения иммунологического феномена Davenport et al. [18] предположили, что во время первого инфицирования вирусом гриппа еще в детском возрасте иммунная система ориентируется на некий доминантный антиген среди циркулирующих штаммов вируса. Последующее экспонирование к вирусам гриппа, антигенно связанным с предыдущим, вызывает подъем уровня антител не на их антигены, а на штамм, вызвавший первую инфекцию. Это наблюдение было кратко резюмировано Francis [19] в виде "доктрины первичного антигенного греха" (the doctrine of original antigenic sin). Установление природы феномена антигенного импринтингаDavenport и Hennessy [20] для определения границ феномена провели вакцинацию моновалентными вакцинами, содержащими инактивированные штаммы различных антигенных вариантов (сероподтипов) вируса гриппа А, циркулировавших среди людей за последние 30 лет. Среди них вирус свиного гриппа (Hsw1N1; swine influenza) — циркулировал во время пандемии "испанки" 1918 г. и некоторое время позже, вирус гриппа А (H0N1)6 — вызывал вспышки гриппа с начала 1930-х гг. до 1943 г., вирус гриппа А-prime (H1N1, influenza A-prime) — доминировал в циркуляции среди людей с 1946 г. до начала 1950-х гг. Вакцинация была проведена в группе детей, которые были вовлечены в вспышки гриппа, вызванные вирусом гриппа сероподтипа A-prime, в группах взрослых (рекруты), детьми переживших вспышки гриппа А, и взрослых людей старше 30 лет. У детей высокие титры антител отмечены на вакцину на основе вируса гриппа A-prime (H1N1), у рекрутов — на вакцину против вируса гриппа А (H0N1), у людей старше 30 лет — на вакцину на основе вируса свиного гриппа (Hsw1N1). У некоторых волонтеров двух последних групп были обнаружены антитела к вирусам гриппа A-prime (H1N1), свидетельствующие о ранее перенесенной инфекции. Реакция человека на введение моновалентных вакцин оказалась типоспецифической. Антитела к вирусу гриппа A-prime, полученные в результате вакцинации детей по гриппу A или свиному гриппу, не вступали в перекрестные реакции с вирусами гриппа A или свиного гриппа. Такие же результаты получены в группах рекрутов (антитела к вирусу гриппа A) и людей старше 30 лет (антитела к вирусу свиного гриппа). Этим изящным экспериментом Davenport и Hennessy [20] подтвердили ранее полученные ими данные [18], говорящие в пользу того, что иммунная система человека при сходстве антигенов может реагировать на тот, с которым она "столкнулась" впервые. К концу 1950-х гг. предположение Davenport и Hennessy [20] было подтверждено эпидемиологическими исследованиями. Было установлено, что антитела к различным типам вируса гриппа накапливаются в течение всей жизни человека, однако после эпидемических вспышек болезни титр антител бывает наивысшим к тому типу вируса, который обусловил первое заболевание гриппом в раннем детстве [14]. Francis (1959) обнаружил следующую закономерность распределения антител к сероподтипам вируса гриппа типа А среди возрастных групп населения США (табл. 1). Распределение антител к сероподтипам вируса гриппа типа А в сыворотке людей из разных возрастных групп населения США*
*Цит. по [14]. В конце 1950-х гг. эпидемическая ситуация по гриппу изменилась. Вирусы сероподтипов Hsw1N1, H0N1, H1N1 сменил вирус сероподтипа H2N2 (пандемия азиатского гриппа 1957 и 1959 гг.), затем в циркуляции среди людей появился вирус сероподтипа H3N2 (пандемия гонконгского гриппа 1968—1970 гг.) ().
Феномен антигенного импринтинга в 1960-е гг. не только не вызывал сомнения у эпидемиологов и иммунологов, но и использовался ими для разработки методологии археологической серологии. Методология основывалась на определении возрастного распределения антител к различным антигенным вариантам вирусов А и В. Различия в распределении антител среди возрастных групп населения связывали с возникновением анамнестических реакций на вирусы с близкими по структуре антигенами, ранее вызвавшими у человека заболевание гриппом. Благодаря такому подходу установлено, что вирусы гриппа, сходные с А2N2 и В, циркулировавшими среди людей в начале 1960-х гг., вызывали эпидемии гриппа в 1880—1890-х гг. Для распознания по серологическим показателям истинного сероварианта возбудителя гриппа обычно обследовали однородный контингент по возрасту (пионерские лагеря, общежития, воинские части) [14]. Появившиеся в циркуляции среди людей вирусы гриппа сероподтипов H2N2 и H3N2 давали собственные анамнестические ответы иммунной системы. Marine и Thomas [22], проводя серологические исследования среди людей различных возрастных групп, вакцинированных моновалентными инактивированными вакцинами на основе вирусов гриппа серотипа А различных антигенных вариантов (H1N1 и H0N1, H2N2, H3N2), установили, что антигенный импринтинг наблюдается в пределах одного антигенного варианта вируса. У людей, перенесших первую гриппозную инфекцию, вызванную вирусами сероподтипов H1N1и H0N1, была анамнестическая реакция (высокие титры антител) на вакцинацию вакцинами, полученными на основе штаммов вирусов этих сероподтипов, но не H2N2 и H3N2, и наоборот. Эффект антигенного импринтинга проявлялся тем интенсивнее, чем больше времени проходило от момента первого контакта иммунной системы с возбудителем гриппа. Masurel и Drescher [23] в опытах на хорьках, последовательно инфицированных с интервалами в три недели разными штаммами вируса гриппа серотипа А (H1N1, Hsw1N1, H0N1, H2N2, H3N2), установили, что вторичное инфицирование может приводить к появлению HCR-антител, т. е. антител с высокой перекрестной активностью (antibodies highly cross-reacting — HCR antibodies) по отношению к штаммам, антигенно тесно связанным по гемагглютинину (НА) с теми, что вызвали первый инфекционный процесс. При заражении вирусом гриппа через трехнедельные интервалы антител, специфичных к штамму вируса, вызвавшему первый случай инфекции, не обнаруживали. Однако, когда интервал между заражениями увеличивали до 4-5 мес., наблюдался феномен антигенного импринтинга, а HCR-антитела не обнаруживали. Следовательно, образование HCR-антител и антигенный импринтинг — это разные иммунологические феномены. В 1979 г. при анализе статистики заболеваемости населения гриппом было обнаружено, что люди, родившиеся до 1956 г., легко перенесли пандемию русского гриппа (1977—1978 гг.). Подавляющее число заболевших приходилось на людей в возрасте до 20 лет, т. е. на ту часть населения, которая не имела контакта с вирусами гриппа серотипа H1N1, вышедшими из циркуляции более 20 лет тому назад. Напротив, лица старше 30 лет составили только 20% больных, хотя их доля в общей численности населения превышает 50%, т. е. , с учетом низкой заболеваемости в эту эпидемию вообще, люди зрелого и пожилого возраста, имевшие в прошлом контакт с вирусами гриппа H1N1, болели значительно меньше, чем люди более молодых возрастных групп [24]. Данный феномен наблюдался во всех странах, где велся учет заболевших гриппом, и был объяснен антигенным импринтингом. В экспериментах, выполненных на крысах, установлено отсутствие влияния на анамнестические ответы иммунной системы на вирус сероподтипа H1N1, последующего инфицирования вирусом гриппа других сероподтипов (H2N2, H3N2) [25]. Marine и Thomas [22] подтвердили феномен антигенного импринтинга в масштабном исследовании, выполненном на 687 добровольцах разных возрастов, перенесших грипп во время различных пандемий. Добровольцев вакцинировали живыми моновакцинами разных серотипов и изучали анамнестические ответы иммунной системы. В этом же году Couch et al. [26] обнаружили, что после вакцинации инактивированной гриппозной вакциной, полученной на основе штамма вируса A/Scotland/74, в сыворотке 82% вакцинированных людей обнаруживались антитела к вирусу A/HongKong/68, с которым они сталкивались во время предыдущих вспышек гриппа. Только в сыворотке 46% из них были обнаружены низкие уровни антител к вакцинному штамму A/Scotland/74. Но в практике вакцинаций по гриппу феномен антигенного импринтинга подтверждался не всегда (см., например, [27]). Границы изменчивости вируса гриппа в пределах его сероподтипов, при которых этот феномен возможен, пытались в 1999 г. смоделировать Smith et al. [28]. По их данным, чем больше антигенное сходство между штаммами вируса гриппа, использованными для приготовления вакцины, которая применялась для вакцинации, и штаммами вируса, вызвавшего вспышку гриппа, или антигеном вируса, использованного для повторной вакцинации, тем больше вероятность развития феномена антигенного импринтинга и тяжелого течения болезни у инфицированного пациента. При полной антигенной идентичности вирусов антигенный импринтинг невозможен. Но конкретных величин антигенного различия вирусов, при котором он может возникнуть или быть исключенным, они не привели. Тогда же было обнаружено, что явление антигенного импринтинга может наблюдаться не только при гуморальном, но и при клеточном иммунном ответе на возбудители инфекционных болезней. При повторном реагировании на мутировавшие антигены вируса лимфоцитарного хориоменингита (lymphocytic choriomeningitis virus — LCMV), узнаваемые цитотоксическими Т-клетками, цитотоксический ответ происходил преимущественно в отношении того антигенного варианта вируса, с которым иммунная система человека взаимодействовала первично [29]. В 2010 г. аналогичная роль Т-клеточных ответов иммунной системы человека описана при лихорадке Денге [30]. Антигенный импринтинг наиболее опасен при развитии повторной инфекции тогда, когда в результате В- и Т-клеточных ответов образуются низкоавидные перекрестно реагирующие антитела на доминирующие антигенные эпитопы, как, например, это происходит в отношении эпитопов оболочечного белка Е вируса Денге [31]. Такие антитела, образующиеся на ранней стадии повторной инфекции, являются причиной развития другого малоизученного иммунологического феномена — антителозависимого усиления инфекции [32] В 1990-х гг. изменилась ситуация в самой эпидемиологии. Началось время глобальных информационных проектов фармацевтических корпораций, имеющих целью сверхприбыль от коммерческой реализации вакцин. Представления об эпидемиологии и иммунологии инфекционных болезней упростились. Теперь эпидемии уже не были результатом сложных природных и социальных процессов, а возникали из-за появления нового вируса, что автоматически предполагало новую вакцину, массовую вакцинацию и бюджетное финансирование ее проведения. Ответы со стороны иммунной системы на вакцину либо на возбудитель инфекционной болезни в интересах производителей вакцин стали рассматриваться исключительно как защитные. Феномен антигенного импринтинга исчез из руководств и учебников, и современным российским врачам, в отличие от их советских коллег 1960-х гг., он неизвестен. Антигенный импринтинг в период пандемии свиного гриппа в 2009 г."Забытый" иммунологический феномен вспомнили исследователи, не связанные с вакцинным бизнесом, когда стали изучать последствия массовых вакцинаций, навязанных населению фармацевтическими корпорациями под предлогом предотвращения перехода пандемии свиного гриппа в "испанку"7. В 2009 г. Kim et al. [33] подтвердили возможность развития феномена антигенного импринтинга в экспериментах на мышах, используя штаммы A/PR/8/34 (PR8) и A/FM/1/47 (FM1) вируса сероподтипа H1N1. Аминокислотная последовательность HA обоих штаммов была идентична на 92%. Также они показали, что если проводить последовательную вакцинацию мышей инактивированными вакцинами, полученными на основе разных штаммов вируса гриппа (PR8 и FM1), то при последующем заражении адаптированным штаммом FM1 мыши оказываются менее защищенными от вируса, чем после иммунизации только одним инактивированным FM1. Титр вируса гриппа в легких мышей, вакцинированных сначала PR8, а затем FM1, был в 46 раз выше, чем у мышей, вакцинированных только инактивированным FM1. Мыши, вакцинированные сначала инактивированной вакциной, затем живой, демонстрировали выраженный антигенный импринтинг. Последующее инфицирование животных вирулентным штаммом вируса вызывало у них слабый ответ нейтрализующих антител на этот вирус. Индукция феномена антигенного импринтинга не зависела от введенной дозы вирусов (0,01 или 0,1 LD50) или последовательности, в которой они были введены экспериментальному животному. Choi et al. [34] обнаружили, что 18-20-летние студенты, ранее многократно вакцинированные вакцинами, предназначенными для сезонной вакцинации по гриппу, реагировали на гриппозную вакцину, разработанную для противодействия распространению пандемического вируса сероподтипа рH1N1 (pandemic H1N1 2009; pH1N1), значительно слабее, чем те студенты, кого раньше не вакцинировали. Однако выяснить, какая вакцинация стала причиной антигенного импринтинга, исследователям не удалось, так как за последние 15 лет в состав вакцин для сезонной вакцинации включалось шесть различных штаммов (!) вируса гриппа сероподтипа H1N1. Установлено только то, что это не была комбинированная вакцина, включающая вирус A/Brisbane/59/2007(H1N1), которая была использована три месяца назад для вакцинации населения. Она не создавала значительного перекрестного защитного эффекта по отношению к вирусу pH1N1. Анализ заболеваемости в разных возрастных группах населения во время глобальной активизации вируса рH1N1 в 2009 г. дал тот же результат, что и подобные анализы заболеваемости, проведенные в начале 1950-х гг. и после пандемии русского гриппа в конце 1970-х гг. У людей, родившихся до 1957 г., антигенный импринтинг стал причиной высоких титров вирус-нейтрализующих антител, вырабатывающихся как в ответ на вакцинацию, так и на гриппозную инфекцию. В других же возрастных группах антигенный импринтинг повышал смертность заболевших [35–38]. (рис. 2)
Четыре эпидемиологических исследования распространения вируса пандемического гриппа рH1N1, выполненные в Британской Колумбии в 2009 г., показали повышенный риск его развития у лиц, ранее вакцинированных тривалентной инактивированной гриппозной вакциной (trivalent inactivated influenza vaccine, TIV), применяемой для сезонной профилактики гриппа. Авторы связывают повышенный риск развития гриппа у вакцинированных людей с феноменами антигенного импринтинга, антителозависимого усиления инфекции и с другими еще неизвестными факторами, на необходимость изучения которых они обращают внимание исследователей [39–40]. После предшествующих многократных вакцинаций и перенесенных в прошлом заболеваний гриппом антигенный импринтинг приводит к тому, что в сыворотке крови циркулируют специфические низкоавидные антитела, перекрестно реагирующие с вирусами гриппа, но не обладающие протективным действием. Вспышки свиного гриппа 2009 г. внесли ясность и в их роль в патогенезе гриппозной инфекции. По данным Monsalvo et al. [41], у умерших пациентов среднего возраста и тех, у кого грипп имел тяжелое течение, специфические низкоавидные антитела (IgG) формировали иммунные комплексы с вирусом, оседавшие в легочной ткани и вызывавшие отек легких, перибронхиолярную мононуклеарную клеточную инфильтрацию и как результат — гипоксемию. Чем выше был титр таких антигриппозных антител, тем тяжелее протекала болезнь. У пациентов не обнаруживали антител, нейтрализующих pH1N1, и находили вирус гриппа в легочной ткани в высоких титрах. По результатам их исследования в Аргентине прекратили вакцинацию детей против гриппа до 2010 г. Reichert et al. [38] обнаружили один из механизмов изменений в антигенной структуре НА вируса гриппа, приводящих к развитию антигенного импринтинга при повторном взаимодействии вируса с иммунной системой человека. По их данным, HA вируса рH1N1 тесно связан с HA вируса, вызвавшего пандемию гриппа "испанки" в 1918 г., и вирусов, циркулировавших в период с 1930 по 1943 гг. Эволюция вирусов сероподтипа H1N1, циркулировавших в популяциях людей в 1940—50-е гг. и после его возвращения в 1977 г., происходила через гликозилирование HA (т. е. присоединение остатков сахаров к HA) (рис. 3).
Гликозилирование HA сформировало то антигенное разнообразие среди вирусов гриппа, вызывающих сезонные вспышки болезни, которое проявилось антигенным импринтингом в отдельных возрастных группах после появления в циркуляции вируса pH1N1. Специфичность антигенного импринтинга, проявившаяся защитным эффектом в старших возрастных группах населения, и сравнительные данные по гликозилированию HA вирусов гриппа (рис. 3) свидетельствуют в пользу того, что вирус pH1N1 идентичен вирусу, преобладавшему в циркуляции среди людей в первой трети ХХ в. Тогда возникают следующие вопросы:
Антигенный импринтинг при ВИЧ-инфекцииФеномен показан:
Первыми на антигенный импринтинг при разработке ВИЧ-вакцин натолкнулись Nara et al. [43]. Они пытались расширить иммунный ответ на антигены ВИЧ в отношении вирусов различного географического происхождения. Введя шимпанзе гликопротеид gp120, полученный из штамма ВИЧ-1 IIIB, и проведя через 175 сут. повторную вакцинацию gp120, выделенным из штамма ВИЧ-1 RF, имеющего другое географическое происхождение, они неожиданно для себя обнаружили рост титров антител к gp120 штамма IIIB и отсутствие защитного эффекта при заражении животных ВИЧ-1 RF. Проведенный ими ретроспективный анализ научной литературы показал, что феномен OAS уже был описан для других ретровирусных инфекций, в частности, вызываемых вирусом висны у овец [44] и вирусом инфекционной анемии у лошадей [45] (рис. 4).
При изучении протективного эффекта ВИЧ-вакцины, включающей в качестве антигенного компонента gp120.16, выделенный из ВИЧ-1 SF2, получены сходные результаты. Люди, вакцинированные такой вакциной и имеющие высокие титры антител к gp120.16, оказались восприимчивы к вариантам ВИЧ-1, циркулирующим в их популяции. При развитии ВИЧ-инфекции в их сыворотке крови преобладали антитела к gp120.16 ВИЧ-1 SF2, а не к такому же оболочечному гликопротеину вируса, вызвавшего инфекцию [46]. Феномен антигенного импринтинга обнаружен и при изучении иммунного ответа у ВИЧ-инфицированных пациентов. Выработка антител к ВИЧ у них имеет олигоклональный характер. Одновременно происходит нарушение соотношения κ/λ типов легких цепей антител, поддерживающееся в течение многих лет независимо от скорости прогрессирования заболевания. Ограниченные (restricted) и при этом стабильно поддерживающиеся антительные ответы на антигены ВИЧ у таких пациентов представляют собой одну из причин невозможности выработки антител к ВИЧ-1, которые эффективно связывали бы сероварианты вируса, образовавшиеся в ходе персистирующего инфекционного процесса [47]. Антигенный импринтинг при малярииБлагодаря работам Pleass et al. [48] удалось показать возможность создания противомалярийной вакцины на основе 19-кДа фрагмента белка MSP119, находящегося на поверхности мерозоитов Plasmodium falciparum — бесполых форм плазмодия. При разрыве эритроцитов мерозоиты попадают в кровь, что приводит к периодическим приступам лихорадки. Связывание специфических антител с белком MSP119 блокирует проникновение возбудителя малярии в эритроциты и активирует его уничтожение фагоцитами. Wipasa et al. [49] в опытах на мышах смоделировали ситуацию гетерогенного ответа на вакцинацию белком MSP119 в популяции людей, длительно живущих в эндемичном по малярии регионе. Ими было показано, что заражение мышей P.yoelii YM8 вызывает образование антител к нативному MSP119, титр которых после перенесенной мышами экспериментальной малярии они повысили бустерной вакцинацией рекомбинантным белком MSP119. Однако действие, выполненное в обратном порядке, т. е. сначала однократная инъекция (субоптимальная вакцинация) рекомбинантного белка MSP119, а затем инфицирование P.yoelii YM, привело к образованию антител к MSP119, не обладающих протективным действием, и к снижению естественного иммунитета к заражению возбудителем малярии. Антигенный импринтинг при лихорадке ДенгеЛихорадка Денге — трансмиссивная болезнь, встречающаяся в странах Южной и Юго-Восточной Азии, Африки, Океании и Карибского бассейна. Отдельные вспышки болезни охватывают сотни тысяч человек. Ежегодно в мире не менее 50 млн человек заболевают лихорадкой Денге. Возбудитель лихорадки Денге (Dengue fever virus, DENV) — оболочечный (+)ssРНК-вирус9, четыре серотипа которого (DENV1-DENV4) относятся к арбовирусам семейства Togaviridae рода Flavivirus (арбовирусы антигенной группы В). Передача возбудителя инфекции среди людей осуществляется комарами Aedes aegypti, среди обезьян — Aedes albopictus. Обычно болезнь имеет мягкое течение и может проходить бессимптомно. В 1-5% случаев она приобретает характер геморрагической лихорадки (hemorrhagic fever — DHF). У заболевшего человека развиваются геморрагический диатез и шоковое состояние (шоковый синдром Денге), которые могут привести его к смерти [50]. Причины такого осложнения длительное время не были ясны. В 1983 г. Halstead et al. [51] обнаружили, что у тайских детей, попавших в клинику в шоковом состоянии после повторного развития у них лихорадки Денге, в сыворотке крови обнаруживаются в основном антитела, специфичные к вирусам серотипов, вызвавших лихорадку Денге несколько месяцев назад. К серотипам вирусов, обнаруженным у маленьких пациентов вирусологическими методами исследования, антитела образовывались медленно и присутствовали в сыворотке пациентов в низких титрах. Исследователи объяснили данный феномен стимуляцией В-клеток памяти, оставшихся после первого инфицирования, т. е. антигенным импринтингом. Основными антигенами вируса Денге, в отношении которых плазмоцитами синтезируются нейтрализующие антитела, являются оболочечный белок Е и премембранный белок prM. Главную роль в антигенном импринтинге играют эпитопы третьего домена белка Е (ED3). В отношении их происходит выработка антител с широкой перекрестной активностью к белку Е вирусов Денге других серотипов, обладающих низкой авидностью [32]10. Однако антигенный импринтинг оказался только частью патогенетического механизма развития DHF, в котором участвует иммунная система. Образующиеся в ответ на повторное инфицирование вирусом другого серотипа антитела к вирусам серотипа, вызвавшего первый инфекционный процесс, обладают перекрестной специфичностью к штамму вируса, вызвавшего повторное инфицирование пациента, но они не нейтрализуют его, а способствуют размножению в организме человека, связывая вирусные частицы с Fc-рецепторами (FcR)11 на поверхности макрофагов/моноцитов. Данный феномен называется антителозависимым усилением инфекции и подробно описан ниже. Суть феномена антигенного импринтингаПриведенные выше данные и обобщение Nara et al. [43] позволяют кратко изложить суть феномена антигенного импринтинга при инфекционных и поствакцинальных процессах. При повторном контакте иммунной системы с патогенным микроорганизмом или вакциной различия между старым вариантом эпитопа антигена и его новым вариантом могут быть "незамеченными" иммунной системой примерно так, как в оптическом приборе не различаются детали, выходящие за пределы его разрешения. И тогда в процессе антигенной стимуляции первыми активизируются В-клетки памяти, "запомнившие" предыдущий антиген. Далее они дифференцируются в плазмоциты, продуцирующие антитела в отношении этого антигена, хотя иммунная система с ним не контактирует. Образующиеся антитела не способны эффективно нейтрализовать возбудителя инфекционной болезни, выработка же специфических к нему антител тормозится из-за подавления "наивных" В-клеток активизировавшимися В-клетками памяти. Как заметили Kim et al. [16], в данном случае В-клетки памяти формируют "слепое пятно" (blind spot) иммунной системы. Parsons et al. [42] такой ответ В-клеток памяти назвали замороженным репертуаром (repertoire freeze). Закон Дженнера — Пастера и правило Бернета соблюдаются, но при антигенной дистанции между штаммами (серотипами, серовариантами) возбудителя инфекционной болезни, превышающей размеры "слепого пятна" иммунной системы. Для возбудителей инфекционных болезней, вызывающих феномен антигенного импринтинга, характерны:
Роль антигенного импринтинга в эпидемических, инфекционных и поствакцинальных процессахВ общем виде ее можно представить следующим образом:
Устранение антигенного импринтинга при вакцинацииВ табл. 2 обобщены подходы к устранению антигенного импринтинга при вакцинации. Устранение антигенного импринтинга при вакцинации
Судя по датам поступления в редакции научных журналов рукописей статей, работы по созданию нового поколения вакцин, позволяющих "обойти" антигенный импринтинг при массовых вакцинациях населения, ведутся уже не менее десяти лет. Основываются они на объективных знаниях тонких механизмов иммунного ответа применительно к инфекционному процессу, вызванному конкретным возбудителем инфекционной болезни. 3. Феномен антителозависимого усиления инфекции (antibody-dependent enhancement — ADE)12Феномен ADE впервые описан в 1964 г. Hawkes [53], обнаружившим повышение продукции различных флавивирусов (японского энцефалита, энцефалита долины Мюррей и др.) в клетках куриного эмбриона, впервые экспонированных к вирусам, находящимся в среде с низким содержанием специфических антител. Впоследствии он привел доказательства, что увеличение "выхода" вируса в подобных экспериментах вызвано образованием комплекса "вирус-антитело" [54]. Эти данные настолько расходились с общепринятыми представлениями о защитной роли антител в инфекционном процессе, что их посчитали артефактами. Однако в конце 1960-х и начале 1970-х гг. уже другими исследователями была обнаружена роль ADE в патогенезе тяжелых форм геморрагической лихорадки, вызванной вирусом Денге. Было установлено, что наличие антител в сыворотке крови реконвалесцента, оставшихся после легко перенесенных случаев лихорадки Денге, приводит к тяжелому течению болезни, если произошло повторное заражение DENV другого серотипа [55–56]. За рубежом феномен ADE систематически изучается с конца 1980-х гг. [57] Но его описание в российских руководствах для врачей не приводилось. СТАДИИ ADEСуть феномена ADE состоит в усилении инфекционного процесса в присутствии антител, специфических к возбудителю инфекционной болезни. ADE развивается в две стадии:
В основном феномен ADE проявляется в ответ на образование антител изотипа IgG1 [58]. У людей имеются три типа рецепторов Fc, которые связывают IgG: сиалогликопротеины FcyRI, FcyRII и FcyRIII (CD16). FcyRI наиболее представлен на моноцитах/макрофагах человека, и он связывает IgG с наибольшей авидностью. Поэтому ему принадлежит лидерство среди других рецепторов макрофагов в реализации феномена ADE. ADE, показанный в условиях in vitro, не обязательно воспроизводится в условиях in vivo [59]. Феномен ADE характерен для инфекционных процессов, вызываемых вирусами, имеющими следующие особенности:
Феномен ADE также обнаружен при инфекционных процессах, вызываемых бактериальными патогенами, но изучен фрагментарно. Например, порообразующий токсин золотистого стафилококка — лейкоцидин — усиливает свое токсическое действие, если в крови человека содержатся специфические к нему антитела [61]. Такой же эффект вызывают моноклональные антитела к токсину А патогенных клостридий [62]. Имеются косвенные доказательства причастности феномена ADE к прогрессированию туберкулезной инфекции и Ку-лихорадки. При аэрозольном инфицировании M. tuberculosis мышей 57BL/6, дефицитных по рецептору FcgIIB, патологические изменения у них развиваются через 30 сут., у интактных мышей — через 20 сут. [63] В условиях in vitro показано, что антитела к C. burnetii I фазы стимулируют ее размножение в макрофагах более эффективно, чем антитела к этому же микроорганизму II фазы [64-65]. Возможно, что первое описание ADE дал Заболотный, наблюдавший в 1899 г. в Вэнчане (Монголия) появление пустулезной формы чумы у больного с бубонной чумой на пятые сутки после введения противочумной сыворотки. Он объяснил это явление примерно так, как сегодня объясняют ADE: антитела к возбудителю чумы распространили его по фагоцитирующим клеткам и усилили инфекционный процесс [67]. Можно предположить, что из-за низкого качества противочумной сыворотки, примененной Д. К. Заболотным, и ненадлежащих условий ее хранения во время экспедиции к очагам чумы в Монголии, антитела к возбудителю чумы утратили нейтрализующее действие, но сохранили способность взаимодействовать с FcR. eADEФеномен наблюдается в двух вариантах:
В табл. 3 обобщены сведения по вирусным и бактериальным инфекциям, сопровождающимся феноменом еADE. Инфекционные болезни, сопровождающиеся феноменом еADE*
* За основу взята таблица, опубликованная нами ранее [9]. Безоболочечным вирусам (non-enveloped viruses), образовавшим комплекс с антителом, способным взаимодействовать с Fc-рецептором, специфические рецепторы на поверхности клетки-мишени не требуются [68]. Компонент комплемента С116, связывая Fc-фрагмент антитела, инициирует классический путь активации комплемента, в результате чего активируется компонент комплемента С3, ковалентно (!) связывающийся или с антителом, или с поверхностью вирусной частицы. Образовавшийся комплекс способен взаимодействовать с рецепторами комплемента на поверхности клетки посредством С3, усиливая взаимодействие вируса с клеткой. Альтернативно C1q-субъединица непосредственно может перекрестно связывать вирусный белок и C1q-рецепторы (C1qR) на поверхности фагоцитирующих клеток. Все перечисленные эффекты находятся в зависимости от концентрации антител. iADEТолчком к исследованиям блокирующего действия ADE на антивирусную защиту клетки послужили данные, полученные при изучении причин развития хронических артритов у реконвалесцентов, перенесших острую форму болезни, вызванную вирусом Росс Ривер (Ross River virus, RRV). Такие артриты могут длиться до года, делая пациента на весь этот период неработоспособным. В синовиальной жидкости пациентов с хроническими артритами обнаружены антигены RRV и гамма-интерферон (IFN-гамма), что свидетельствует о хронической RRV-инфекции. При попытке ее воспроизвести на линиях мышиных макрофагов и первичных человеческих моноцитов/макрофагов (primary human monocytes/macrophages)17 установлено, что инкубирование RRV с разбавленной специфической сывороткой приводит:
Классификация феномена ADEПриведенные данные позволяют нам предложить классификацию феноменов ADE по двум принципам: по типу рецептора, с которым вирус взаимодействует на поверхности моноцитов/макрофагов (С-ADE и FcR-ADE), и по механизмам развития ADE (рис. 6).
Первая классификация удобна для изучения феномена ADE в условиях in vitro, например, для установления границ феномена среди близкородственных видов вирусов на клетках культур тканей, содержащих, либо, наоборот, не содержащих Fc- и CIq-рецепторы, либо при их блокировании специфическими мАТ. Границы феномена ADE устанавливаются с помощью специфических сывороток к вирусам близкородственных видов. Вторая классификация — для воспроизведения ADE в условиях in vivo при разработке ИЛП и их доклинических и клинических исследованиях. Феномен ADE, развивающийся на фоне сенсибилизации, вызванной предшествующим инфекционным процессомНаиболее изучен среди других проявлений феномен ADE, поэтому мы рассмотрим его более подробно, чем остальные. Опережающим объектом исследований при изучении данного феномена является геморрагическая лихорадка Денге. Схема жизненного цикла DENV в отсутствие специфических антител представлена на рис. 7.
После проникновения DENV в эндосомы, клетка запускает механизмы антивирусной защиты [93], в частности, экспрессию интерферонов (IFN). Оба типа интерферонов — тип I (a, b) и тип II (y) способны блокировать репликацию DENV, если происходит его распознавание эндосомальными рецепторами: toll-подобный рецептор 3 (toll-like receptor — TLR-3)18 — распознает двухцепочечную РНК (dsRNA) вируса, TLR8 распознает G-богатые олигонуклеотиды и TLR7 распознает ssРНК. В цитоплазме вирусную РНК "узнают" цитоплазматические РНК-геликазы (cytoplasmic RNA helicases)19, RIGI (retinoic-acid inducible gene 1) и MDA5 (melanoma differentiation-associated gene 5). Активация TLR индуцирует экспрессию провоспалительных цитокинов: IL-8, IL-12, IFN-a и IFN-y. Положительная регуляция экспрессии IL-8 осуществляется через ядерный фактор каппа-би (NF-kB). Экспрессия IFN активирует STAT1 и усиливает экспрессию IRF1 (IFN regulatory factor 1), что приводит к усиленной продукции активных радикалов азота (NO). Комбинированное действие интерферонов и NO вызывает антивирусное состояние у соседних клеток (antiviral state) и ограничивает размножение DENV в инфицированных клетках соответственно [94]. При первичном инфицировании человека DENV иммунные ответы на вирус мало отличаются от тех, что описаны в классической схеме иммунного ответа, приведенной выше. Специфичные в отношении DENV B- и T-клетки формируются приблизительно через 6 сут. после инфицирования и полностью контролируют развитие инфекции. Вирион DENV распознается антителами, специфичными к белкам E и prM. Структурная организация этих белков у "созревшего" и "несозревшего" вируса различается. Следовательно, различаются и их специфические эпитопы. Доминирующую роль в нейтрализации вируса играют антитела к белку prM "созревшего" вируса. Нейтрализующая активность специфических к DENV антител проявляется на двух уровнях:
Антитела к prM "несозревшего" вируса обладают перекрестной активностью к DENV всех серотипов, но их нейтрализующая активность незначительна [95–96]. Репликация DENV, как и любого другого РНК-вируса, сопровождается большим количеством ошибок. Вызвано это тем, что все молекулы вирусной РНК реплицируют через асимметричную транскрипцию с одной цепи, исключающую большинство корректирующих механизмов, характерных для репликации ДНК. Поэтому первичный инфекционный процесс при лихорадке Денге сопровождается полиморфизацией DENV и образованием квазиспецифичных производных в пределах его серотипа. Иммунная система реагирует на них выработкой специфических антител [97]. При вторичном инфицировании человека DENV гетерологичного серотипа стимулируются клоны В-клеток памяти, сохраняющие информацию о DENV, инфицировавшем человека первично. Они дифференцируются в плазмоциты, продуцирующие антитела к вирусу (его квазипроизводным), который они запомнили, а не к тому, который вызвал инфекцию. Этот иммунологический феномен называется феноменом "первичного антигенного греха", или антигенным импринтингом (см. выше). Усиление инфекционного процесса происходит еще до того, как концентрация антител достигнет порога, необходимого для нейтрализации вируса. Продуцируемые плазмоцитами антитела "узнают" DENV, вызвавший инфекционный процесс, но не нейтрализуют его. Они формируют с вирусом комплекс и связывают его с Fc-рецептором на поверхности макрофагов (феномен FcR-ADE), тем самым усиливая инфекционный процесс. Одновременно происходит гомогенизация популяции DENV, так как на этапе eADE преимущества в инфицировании макрофагов/моноцитов получают лишь те квазипроизводные DENV, в отношении которых плазмоцитами вырабатываются антитела, способные связать их с Fc-рецепторами [50, 97]20 (рис. 8).
Изменения в клетке, связанные с iADE, начинаются раньше, чем DENV покинет эндосому. Точный механизм развития iADE не установлен. Имеющиеся знания позволили [50] описать его следующим образом. Комплекс "DENV — специфическое антитело" через рецептор Fc запускает негативные регуляторы экспрессии TLR3, TLR4, TLR7 и TLR—сигнальных молекул. В результате слабой экспрессии этих рецепторов вирус, проникший в эндосому, не узнается клеткой, эффективной экспрессии генов, кодирующих интерфероны и синтез противовоспалительных цитокинов IL—8, IL—12, не происходит. Одновременно блокируется экспрессия IRF1, что тормозит продукцию активных радикалов азота21. Подавление системы противовирусной защиты клетки приводит к длительному размножению в них DENV и увеличению выхода зрелых вирусных частиц [97]. Однако только персистированием DENV в макрофагах iADE при лихорадке Денге не ограничивается. По сигнальным путям, инициируемым через рецептор Fc, запускается экспрессия гена IL-10, макрофаг начинает продуцировать большие количества IL-10, ингибирующего синтез противовоспалительных цитокинов (IFN-y, IL-2, -3, -12 и др.) и усиливающего синтез фактора некроза опухолей (TNF) и IL-6, вызывающих повышенную проницаемость сосудов [99]. IL-10 также нарушает дифференциацию Т-хелперов на субпопуляции Th1 и Th2, что ведет к нарушению взаимодействия между клеточными и гуморальными звеньями иммунной системы при блокировании размножения DENV [100]. Лихорадка Денге развивается в тяжелой клинической форме. Исследования, проведенные с целью выяснить, какие аминокислотные замены структурных и неструктурных белков различных серотипов DENV (мутации в их генах) ассоциируются с тяжелым течением болезни, не дали результатов. Повышенная виремия и высокие количества IL-10 в сыворотке крови всегда сопровождают тяжелое состояние больного. Других объяснений тяжелых осложнений при геморрагической лихорадке Денге, кроме как вовлечения в патогенез болезни ADE, пока не предложено [97, 101]. Феномен ADE, развивающийся без предварительной сенсибилизациииммунной системыTakada et al. [68, 76, 102] показали, что ADE при инфекционном процессе, вызванном вирусом Эбола (субтип Zaire), развивается в результате взаимодействия образующихся вирус-специфических антител с вирусом и Fc1-рецептором или компонентом комплемента C1q и его рецептором (C1ADE) у макрофагов. Используя моноклональные антитела, исследователи локализовали такие эпитопы у GP вируса субтипа Zaire и сконструировали химерные эпитопы, индуцирующие продукцию антител у мышей со сниженной способностью вызывать ADE, но обладающих нейтрализующей активностью в отношении вируса субтипа Zaire. Феномен ADE был менее выражен для не опасного для человека субтипа Reston, чем для вирусов субтипов Zaire и Sudan. Авторы данных работ предположили, что феномен ADE играет важную роль в патогенезе лихорадки Эбола (рис. 9).
Для лихорадки Марбург феномен ADE был описан в 2011 г. Так же, как для субтипов вируса Эбола, показана связь между ADE и вирулентностью изолятов вируса Марбург. Авторами делается вывод, что феномен ADE лежит в основе патогенеза не только лихорадок Марбург и Эбола, но и других филовирусных геморрагических лихорадок [77]. Феномен ADE, развивающийся в ходе персистирующего инфекционного процессаФеномен ADE лежит в основе патогенеза болезни многих персистирующих инфекционных процессов. Например, клинически выраженный кошачий инфекционный перитонит, вызываемый FIPV (семейство Coronaviridae), развивается у кошек, уже имевших антитела после ранее перенесенной бессимптомной инфекции либо на фоне персистирующей инфекции в случае мутации вируса, приведшей к появлению его нового антигенного варианта. Отличить же вирулентные штаммы FIPV от невирулентных в прямых опытах на животных не удается [103–104]. Алеутская болезнь норок вызывается парвовирусом (Aleutian disease virus, ADV) из семейства Parvoviridae. ADV патогенен для норок всех цветных вариантов. Основной источник вируса — переболевшие норки-вирусоносители, выделяющие вирус с мочой, калом и слюной. Репликация ADV в макрофагах сопровождается секрецией плазматическими клетками большого количества антител, не обладающих способностью нейтрализовать вирус. Эти антитела образуют иммунные комплексы с ADV, увеличивающие инфицированность макрофагов и вызывающие образование ненейтрализующих антител. Порочный круг замыкается осаждением комплекса "ADV — антитело" на ренальных гломерулярных мембранах или стенках капиллярных сосудов почек, что приводит к летальному гломерулонефриту [89]. Но наиболее интересную роль феномен ADE играет при ВИЧ-инфекции. Для ВИЧ он показан в конце 1980-х гг. [69–70], но до сих пор игнорируется разработчиками ВИЧ-вакцин. У ВИЧ-инфицированных людей соблюдается определенная очередность проявления вариантов развития eADE. На ранней стадии инфекции феномен реализуется через V3-петлю gp120 (по типу FcR-ADE); по типу C-ADE феномен начинает проявляться перед клиническим прогрессированием ВИЧ-инфекции [57]. Клиническое значение феномена ADE для ВИЧ — это прогрессирование инфекции и облегчение переноса вируса от матери к плоду [105]. Вне контекста представлений о роли ретровирусов в эволюции клеточных форм жизни и роли ADE в эволюции ВИЧ процесс накопления разных вариантов ВИЧ в популяциях людей выглядит случайным, как проявление некой способности ВИЧ "постоянно меняться". Но случайностей в этом процессе нет. По данным Takeda et al. [106], в условиях in vitro добавление к клеткам моноцитов сыворотки ВИЧ-инфицированных людей в субнейтрализующих концентрациях значительно усиливает репликацию вируса, т. е. на ранних этапах выработки антител к новому серотипу вируса основную роль в усилении инфекционного процесса играет феномен ADE. Высокие концентрации такой сыворотки в условиях in vitro показывают вирус-нейтрализующую активность. Следовательно, ВИЧ не удается "увильнуть" от специфических антител, однако блокирования инфекционного процесса специфическими антителами в условиях in vivo не происходит. Высокая скорость мутаций при обратной транскрипции и высокая скорость репликации ВИЧ генерируют большое количество серовариантов ВИЧ. Особенно этот процесс дает о себе знать после сероконверсии и перехода болезни в асимптоматическую стадию. Как только уровень антител, нейтрализующих данный серотип ВИЧ, достигает определенного порога, селекционируется вариант вируса, избегающий их нейтрализующего действия [107]. Выработка антител к нему начинается заново. И вновь путем вовлечения в инфекционный процесс феномена ADE новому серотипу вируса обеспечивается распространение по клеткам, содержащим на своей поверхности Fc-рецептор (ранняя стадия инфекции) и рецептор комплемента (перед клиническим прогрессированием ВИЧ-инфекции). С каждым новым серовариантом вируса цикл повторяется. Скорость появления как ВИЧ-нейтрализующих антител, так и избегающих их вирусов варьирует у разных лиц, однако сам цикл многократно повторяется на протяжении жизни ВИЧ-инфицированного человека и больного СПИДом [108], приводя к росту генетического разнообразия ВИЧ. Только по мере истощения иммунной системы и, соответственно, работы маховика ADE, гетерогенизация ВИЧ прекращается. Эту закономерность хорошо иллюстрируют данные Shankarappa et al. [109] У ВИЧ-инфицированных пациентов, так называемых умеренных прогрессоров (moderate progressors), в пределах асимптоматической стадии ВИЧ-инфекции Shankarappa et al. [109] выделяют три фазы дивергенции и три фазы роста разнообразия ВИЧ. Под дивергенцией (divergence) эти авторы понимают различия между нуклеотидной последовательностью исходного вируса и последовательностью вируса, полученного от ВИЧ-инфицированного человека через какое-то время после инфицирования. Под разнообразием (diversity) подразумеваются различия в нуклеотидных последовательностях ВИЧ в данной временной точке (рис. 10).
Приведенные Shankarappa et al. [109] данные показывают, что в раннюю фазу инфекции развиваются оба процесса; промежуточная фаза характеризуется непрерывным увеличением дивергенции ВИЧ, но стабилизацией или даже снижением его разнообразия; поздняя фаза проявляется снижением темпа или даже стабилизацией процессов дивергенции и формирования разнообразия вируса. Результатом работы такого механизма являются:
По данным Zhang et al. [110], увеличение генетического разнообразия вируса субтипа С у детей зависит от антител с широким нейтрализующим действием. Чем выше титр таких антител, тем больше на данный момент времени вирусы различаются между собой. То, что ВИЧ меняется не сам, а его в ходе инфекционного процесса меняет иммунная система с помощью феномена ADE и специфических антител, выглядит странно только в контексте медицинского подхода к пониманию ВИЧ/СПИД-пандемии. Но это проблема гораздо шире. ВИЧ относится к семейству Retroviridae. Вирусы этого семейства интегрируют свою ДНК-копию (провирус) с геномом хозяина в единую молекулу ДНК. Если ретровирус становится частью генома вида, то вид считается прошедшим через эндогенизацию. Эндогенные ретровирусы активны в геноме вида и его видов-потомков до 6 млн лет. Они передаются вертикально, инициируя наращивание его генетического материала образованием своих новых копий, усложняя геном образованием новых экзонов из интронов и/или увеличивая количество генов, подвергающихся альтернативному сплайсингу [111–116]. По своей сути этот процесс представляет один из механизмов эволюции видов. Эволюционное прошлое иммунной системы многоклеточных организмов свидетельствует о закреплении за ней естественным отбором резервуарной роли по отношению к ретровирусам. Благодаря клеткам иммунной системы происходят размножение и накопление в популяции вида экзогенных ретровирусов до какой-то критической массы, которая позволяет некоторым из них эндогенизироваться в зародышевой линии отдельных особей инфицированного вида и в дальнейшем передаваться вертикально, меняя его эволюционную траекторию в течение миллионов лет. Этот процесс приобрел глобальный характер среди нашего вида под маской ВИЧ/СПИД-пандемии [111]. Феномен ADE, развивающийся на фоне сенсибилизации, вызванной вакцинациейОсложнения после вакцинации, возникающие как следствие феномена ADE, до настоящего времени не стали объектом системных исследований, поэтому сведения о них носят разрозненный характер (табл. 4). Феномен ADE, развивающийся как ответ на вакцинацию*
*По [55]. Феномен ADE у ранее вакцинированного человека может быть связан:
Неполноценная иммунизация. Причинно-следственная связь ADE с неполноценной иммунизацией подробно изучена на примерах инактивированной коревой вакцины и инактивированной вакцины против респираторного синцитиального вируса (respiratory syncytial virus, RSV) [117–118]. Обе вакцины получают путем инактивации вирусов формальдегидом. C начала 1960-х гг., т. е. после начала массовых иммунизаций населения против кори вакцинами, инактивированными формалином22, среди вакцинированных людей отмечаются случаи так называемой атипичной кори (кори, протекающей в тяжелой форме). Iankov et al. [81] показали, что в основе ее развития лежит феномен FcR—ADE, вызываемый антителами к гемагглютинину вируса (поверхностный белок Н). Установлено, что антитела, полученные в отношении антигенных белков вирусов кори и RSV, инактивированных формальдегидом, обладают сниженной протективной способностью по сравнению с антителами, полученными в отношении этих же антигенов живых вакцин. Это вызвано тем, что подвергнутые обработке формалином антигенные белки имеют увеличенное количество активных карбонильных групп, что ведет к нарушению третичной структуры эпитопов [119–120]. ADE как феномен, характерный для взаимодействия возбудителя инфекционной болезни с иммунной системой человека. Если ADE развивается в ходе инфекционного процесса, то есть основание считать, что феномен будет иметь место у вакцинированных людей и животных, если они будут заражены вирусом, против которого их вакцинировали (табл. 3, табл. 4). Показательны результаты экспериментов с вакцинами, разрабатываемыми для специфической профилактики ретровирусных инфекций у животных — инфекционной анемии лошадей и иммунодефицита кошек. Также они имели цель моделирования стратегий вакцинации против ВИЧ. Хотя эти эксперименты выполнены еще в 1990-х гг., они до сих пор не вызвали интереса у разработчиков ВИЧ-вакцин. Инфекционная анемия лошадей вызывается вирусом инфекционной анемии лошадей (Equine infectious anemia virus, EIAV). Болезнь носит нециклический характер, проявляется синдромами лихорадки, анорексии, анемии, выздоровления не наступает. Показано серьезное обострение болезни при заражении EIAV вакцинированных лошадей и пони, если в их сыворотке присутствовали антитела, индуцированные введением вакцины. Issel at al. [71] использовали виремию как критерий тяжести болезни и продемонстрировали, что вакцинация инактивированной цельновирионной вакциной не может предотвратить развитие виремии и клинических симптомов болезни у животного, которому введен вирулентный штамм вируса. В экспериментах по заражению гетерологичным штаммом вируса животных, вакцинированных высокоочищенным оболочечным гликопротеином вируса, также не удавалось предотвратить ни виремию, ни развитие клинических симптомов болезни. В последующем Wang et al. [72] провели масштабные эксперименты на пони и лошадях по оценке защитной эффективности рекомбинантной вакцины, полученной на основе поверхностного гликопротеина EIAV. Результаты экспериментов показали усиление инфекции у всех предварительно вакцинированных животных. Ретровирус, возбудитель иммунодефицита кошек (Feline immunodeficiency virus, FIV), после инфицирования кошек, вакцинированных оболочечным рекомбинантным белком этого вируса, обнаруживался в их крови даже раньше, чем у невакцинированных животных [75]. В сходных исследованиях, выполненных с различными рекомбинантными FIV—вакцинами, было установлено, что в крови животных в ответ на вакцинацию обнаруживаются антитела к оболочечному белку (env) FIV, плохо нейтрализующие вирус в условиях in vitro. У вакцинированных животных вирусная нагрузка была значительно большей, чем у невакцинированных. При росте титров антител к коровому белку (core protein) FIV у кошек имело место усиление клинических признаков болезни [73, 121–122]. Сходные результаты получены в экспериментах на людях по изучению протективного эффекта ВИЧ-вакцины, проведенных в Южной Африке фирмой "Мерк". Из 741 вакцинированного добровольца 24 впоследствии заразились ВИЧ. В другой группе добровольцев, получивших плацебо, 21 из 762 участников также были инфицированы. Эксперимент, по результатам больше похожий на преступление, был досрочно прекращен [123]. Исследователи "Мерка" предпочли не интересоваться тем, сколько ВИЧ-инфицированных будет в обеих группах через три, пять и более лет. Их не заинтересовало сравнение данных о том, как быстро болезнь переходит в стадию СПИДа у вакцинированных и невакцинированных. Как будто прекратив "эксперимент", можно прекратить развитие ADE в случае контакта иммунной системы вакцинированного ВИЧ-вакциной африканца с ВИЧ23. Косвенные доказательства развития феномена ADE в ходе туберкулезного процесса [63] хорошо согласуются с наблюдениями Норейко [126], показавшего, что у людей, вакцинированных вакциной БЦЖ (Bacillus Calmette—Gurin, BCG), вторичные формы туберкулеза склонны к прогрессированию с развитием таких осложнений, как деструкция легочной ткани с бактериовыделением и бронхогенной диссеминацией. Однако с этой точки зрения диссеминация туберкулезного процесса им не рассматривалась, так как феномен ADE не известен клиницистам. Особенности эпидемического очага, в котором проводится вакцинация. Wallace et al. [83] в опытах на мышах установили, что антитела к вирусу японского энцефалита в субнейтрализующих концентрациях увеличивают вирусемию и смертность среди мышей, зараженных вирусом энцефалита долины Мюррей (MVEV). На основании этих данных они предположили, что феномен ADE может способствовать замене одного эпидемического процесса другим. Исследователи считают, что программы по вакцинации населения против вируса японского энцефалита в тех районах, где одновременно с ним циркулирует и MVEV, могут способствовать развитию эпидемии энцефалита долины Мюррей. Роль ADE в эпидемических, инфекционных и поствакцинальных процессахВ общем виде ее можно представить следующим образом:
*****Феномены антигенного импринтинга и антителозависимого усиления инфекции известны ученым уже более 50 лет. Они определяют тяжесть эпидемического и инфекционного процессов и эффективность проведенной вакцинации. В клинической практике осложнения, связанные с этими феноменами, встречаются чаще, чем принято думать, но их не интерпретируют правильно даже опытные клиницисты из-за пробелов в базовых представлениях об иммунитете. Игнорирование антигенного импринтинга и антитело-зависимого усиления инфекции при разработке новых вакцин, их доклинических и клинических исследованиях и проведении массовых вакцинаций населения представляет собой профанацию эпидемиологии и иммунологии, выгодную лишь недобросовестным производителям устаревших вакцин. Профессорско-преподавательский состав медицинских вузов должен понимать и то, что подготовка специалистов, имеющих неполное представление о работе иммунной системы, особенно в такой сфере, как борьба с инфекционными болезнями, создает условия для различных злоупотреблений, тормозит развитие отечественной эпидемиологии и иммунологии, и отдает приоритет новых научных открытий зарубежным ученым. ЛИТЕРАТУРА1. Богомолов Б. П. Инфекционные болезни: неотложная диагностика, лечение и
профилактика. М.: 2007. Библиографическое описаниеСупотницкий М. В. "Забытая" иммунология эпидемических, инфекционных и поствакцинальных процессов // Новости медицины и фармации. — 2014. — № 9-10. — с. 19-23; № 11—12. — с. 16-20. ССЫЛКИ ПО ТЕМЕ1 Ранее нами были рассмотрены подходы к обнаружению обоих феноменов при
доклиническом изучении иммунобиологических лекарственных препаратов (ИЛП) [8–10]. |